01 Åä¾°
ÅÌËã»úÍøÂçʵÏÖÁË×ÊÔ´¹²Ïí¡¢¼´Ê±Í¨Ñ¶ºÍÂþÑÜʽÅÌË㣬¸øÈËÃǵÄÊÂÇéºÍÉúÑÄ´øÀ´Á˼«´óµÄ±ãµ±¡£È»¶øÕâÐ©ÍøÂçÒ²»á±»¶ñÒâÈí¼þÀÄÓ㬽©Ê¬ÍøÂ磨botnet£©¾ÍÊǵäµä·¶×Ó¡£½©Ê¬ÍøÂçÓÉ´ó×ÚÊÜ¿ØÖ÷»ú¼´½©Ê¬£¨bot£©ºÍÒ»¸ö»ò¶à¸öÏÂÁîºÍ¿ØÖÆC2£¨Command &Control£©·þÎñÆ÷×é³É£¬botÓëC2·þÎñÆ÷Ï໥ͨѶÒÔ±ãת´ïÏÂÁîºÍÊý¾Ý¡£Îª×èÖ¹C2·þÎñÆ÷±»·¢Ã÷£¬¶ñÒâÈí¼þÏë·¨½ÓÄɹæ±ÜÊÖÒÕÀ´Òþ²ØbotÓëC2·þÎñÆ÷µÄͨѶÐÐΪ£¬ÆäÖУ¬ÓòÃûÌìÉúËã·¨DGA£¨Domain Generation Algorithm£©¾ÍÊÇÒ»ÖÖÊÊÓÃÊÖÒÕ¡£¼òÆÓµØËµ£¬¹¥»÷ÕßʹÓÃDGAËã·¨ºÍÖÖ×Ó£¨Èçʱ¼ä¡¢´ÇÊéµÈ£©ÌìÉú´ó×ÚËã·¨ÌìÉúÓòÃûAGD£¨Algorithmically Generated Domain£©£¬È»ºóÖ»ÐèҪʹÓÃÒ»¸öÓòÃûÀ´¾ÙÐÐC2ͨѶ£¬¶ø·ÀÓùÕßΪÁË·¢Ã÷¸ÃÓòÃû£¬ÐèÒª¶ÔËùÓÐAGDÓòÃû¾ÙÐмì²â¡£»ùÓÚÕâÖÖ¹¥·ÀË«·½ËùÐè×ÊÔ´µÄ²î³Ø³ÆÐÔ£¬DGAÊÖÒÕ±»¹¥»÷Õ߯ձéʹÓá£MITRE ATT&CK C2Õ½ÊõT1568.002ÊÖÒռͼÁËÊ®¼¸¸öʹÓÃDGAÊÖÒÕµÄAPT×éÖ¯£¬ºÃ±ÈAPT41¡¢Aria-bodyµÈ¡£´Ó2008ÄêÎÛÃûÕÑÖøµÄKrakenºÍConficker¶ñÒâÈí¼þÒÔÀ´£¬ÎªÁËÈÆ¹ýÈëÇÖ¼ì²âϵͳµÄ¼ì²é£¬ÏÕЩËùÓжñÒâÈí¼þ¶¼½ÓÄÉÁËDGAÊÖÒÕ¡£×îеÄÊÖÒÕ±¨¸æÔ¤¼Æ£¬¶ñÒâAGDÓòÃûÊýĿԼռÓòÃû×ÜÊýµÄ9.9%£¬ÆäÖÐ1/5ÊôÓÚ»ùÓÚDGAµÄ½©Ê¬ÍøÂ磨ԼռËùÓÐ×¢²áÓòÃûµÄ1.8%£©¡£
Ä¿½ñ£¬DGAÓòÃû¼ì²âÑо¿ÊÇÇ徲ȦÌÖÂÛµÄÈÈÃÅ»°Ìâ¡£¹Å°åµÄDGAÓòÃû¼ì²âÒªÁìÊÇʹÓúÚÃûµ¥Õ½ÂÔʵÏÖ£¬µ«ÓÉÓÚDGAÓòÃûÈÝÒ×ÌìÉúÇÒ¹æÄ£Á¿´ó£¬Õâ¾Íµ¼ÖÂÒ»Ö±ÍøÂçºÍ¸üкÚÃûµ¥±äµÃ²»ÏÖʵ¡£»ùÓÚ»úеѧϰµÄDGAÓòÃû¼ì²âÒªÁì¿ÉÒÔ×èÖ¹Õâһȱ·¦£¬ÊµÏÖʵʱ¼ì²â£¬ÒѳÉΪDGAÓòÃû¼ì²âÁìÓòÑо¿Ö÷Á÷Æ«Ïò¡£
±¾ÎĽ«Ïò¶ÁÕßÏÈÈÝDGAÓòÃû»ù´¡ÖªÊ¶¡¢DGAÓòÃû¼ì²âÒªÁìÏÖ×´ÒÔ¼°ÎÒÃÇÌá³öµÄDGAÓòÃû¼ì²â¼Æ»®¡£
02 ¼ò½é
2.1 DGAÓòÃû¹¥»÷ÔÀí
DGAÊÇÒ»×éËã·¨»úÖÆ£¬±»ÖÖÖÖ¶ñÒâÈí¼þ¼Ò×åÓÃÀ´ÌìÉú´ó×ÚµÄÎ±Ëæ»úÓòÃû¡£Î±Ëæ»úÒâζ×Å×Ö·û´®ÐòÁÐËÆºõÊÇËæ»úµÄ£¬µ«ÓÉÓÚÆä½á¹¹¿ÉÒÔÔ¤ÏÈÈ·¶¨£¬Òò´Ë¿ÉÒÔÖØ¸´±¬·¢ºÍ¸´ÖÆ¡£
´ó´ó¶¼Ëæ»úÌìÉúµÄÓòÃûÊDz»±£´æµÄ£¬Ö»ÓÐÆäÖÐһС²¿·ÖÓòÃû»á±»×¢²áÒÔ¹©ÊÜ¿ØÖ÷»úÓëC2·þÎñÆ÷¾ÙÐÐͨѶ£¬´Ó¶ø»ñÊØÐÅÏ¢»ò¸ú×ÙÆäËû¶ñÒâʹÃü¡£±ðµÄ£¬µ±Ò»¸öÓòÃû±»ÀÖ³É×èֹʱ£¬¹¥»÷Õß»á´ÓDGAÌìÉúµÄÓòÃûÁбíÖÐ×¢²áÆäËûÓòÃû¡£Ê¹ÓÃDGAÓòÃû¾ÙÐй¥»÷µÄÔÀíÈçͼ1[1]Ëùʾ¡£
¹¥»÷Õßͨ¹ýDGAËã·¨ÌìÉú´ó×Ú±¸Ñ¡ÓòÃû£¬Êܿض˶ñÒâÈí¼þÔËÐÐͳһÌ×DGAËã·¨£¬ÌìÉúÏàͬµÄ±¸Ñ¡ÓòÃûÁÐ±í£¬µ±¾ÙÐй¥»÷µÄʱ¼ä£¬¹¥»÷ÕßÑ¡ÔñÆäÖÐÉÙÁ¿ÓòÃû¾ÙÐÐ×¢²á£¬ÊܿضËͨ¹ýÅÌÎÊ»ñÈ¡ÒÑ×¢²áÓòÃûºó±ã¿ÉÒÔÓëC2·þÎñÆ÷½¨ÉèÅþÁ¬£¬¾ÙÐÐÏÂÁîºÍÊý¾Ý´«Êä¡£

2.2 DGAÓòÃû·ÖÀà
2.2.1 ƾ֤ÖÖ×Ó¾ÙÐзÖÀà
ÖÖ×ÓÊǹ¥»÷ÕߺͿͻ§¶Ë¶ñÒâÈí¼þ¹²ÏíµÄDGAËã·¨µÄÊäÈë²ÎÊýÖ®Ò»£¬²î±ðµÄÖÖ×ӵóöµÄDGAÓòÃûÊÇ·×ÆçÑùµÄ¡£
DGAʹÓõÄÖÖ×ÓÓÐÐí¶àÖÖÀ࣬°üÀ¨ÈÕÆÚ¡¢Éç½»ÍøÂçËÑË÷ÈÈ´Ê¡¢Ëæ»úÊý»ò´ÇÊ飬DGAƾ֤ÖÖ×ÓÌìÉúÒ»´®×Ö·ûǰ׺£¬Ìí¼ÓTLD£¨¶¥¼¶Óò£¬Èçcom¡¢orgµÈ£©ºó»ñµÃ×îÖÕÌìÉúÓòÃû¡£
Ò»Ñùƽ³£À´Ëµ£¬ÖÖ×ӿɰ´ÈçÏ·½·¨¾ÙÐзÖÀࣺ
»ùÓÚʱ¼äµÄÖÖ×Ó£ºDGAË㷨ʹÓÃʱ¼äÐÅÏ¢×÷ΪÊäÈ루È磺ÊÜ¿ØÖ÷»úµÄϵͳʱ¼ä£¬httpÏìÓ¦µÄʱ¼äµÈ£©£»
ÊÇ·ñ¾ßÓÐÈ·¶¨ÐÔ£ºÖ÷Á÷µÄDGAËã·¨µÄÊäÈëÊÇÈ·¶¨µÄ£¬Òò´ËAGD¿ÉÒÔ±»ÌáǰÅÌË㣬¿ÉÊÇÒ²ÓÐһЩDGAËã·¨µÄÊäÈëÊDz»È·¶¨µÄ£¨È磺BedepÒÔÅ·ÖÞÖÐÑëÒøÐÐÌìÌìÐû²¼µÄÍâ»ã²Î¿¼»ãÂÊ×÷ΪÖÖ×Ó£¬TorpigÓÃTwitterµÄÒªº¦´Ê×÷ΪÖÖ×Ó£¬Ö»ÓÐÔÚȷ׼ʱ¼ä´°¿ÚÄÚ×¢²áÓòÃû²Å»ªÉúЧ£©¡£
ƾ֤ÖÖ×ӵķÖÀàÒªÁ죬DGAÓòÃû¿ÉÒÔ·ÖΪÒÔÏÂ4Àࣺ
TID(time-independent and deterministic)£ºÓëʱ¼ä²»Ïà¹Ø£¬¿ÉÈ·¶¨£»
TDD(time-dependent and deterministic)£ºÓëʱ¼äÏà¹Ø£¬¿ÉÈ·¶¨£»
TDN(time-dependent and non-deterministic)£ºÓëʱ¼äÏà¹Ø£¬²»¿ÉÈ·¶¨£»
TIN(time-independent and non-deterministic)£ºÓëʱ¼ä²»Ïà¹Ø£¬²»¿ÉÈ·¶¨£»
2.2.2 ƾ֤ÌìÉúËã·¨¾ÙÐзÖÀà
ÏÖÓÐDGAÌìÉúËã·¨Ò»Ñùƽ³£¿ÉÒÔ·ÖΪÈçÏÂ4Àࣺ
»ùÓÚËãÊõ£º¸ÃÀàÐÍËã·¨»áÌìÉúÒ»×é¿ÉÓÃASCII±àÂëÌåÏÖµÄÖµ£¬´Ó¶ø×é³ÉDGAÓòÃû£¬Ê¢ÐжÈ×î¸ß£»
»ùÓÚ¹þÏ££ºÓùþÏ£ÖµµÄ16½øÖÆÌåÏÖ±¬·¢µÄDGAÓòÃû£¬³£Ê¹ÓõĹþÏ£Ëã·¨ÓУºMD5£¬SHA256£»
»ùÓÚ´ÇÊ飺¸Ã·½·¨»á´ÓרÓдÇÊéÖÐÌôÑ¡µ¥´Ê¾ÙÐÐ×éºÏ£¬ïÔÌÓòÃû×Ö·ûÉϵÄËæ»úÐÔ£¬ÒÉ»óÐÔ¸üÇ¿£¬´ÇÊéÄÚǶÔÚ¶ñÒâ³ÌÐòÖлòÕß´Ó¹«ÓзþÎñÖÐÌáÈ¡£»
»ùÓÚÅÅÁÐ×éºÏ£º¶ÔÒ»¸ö³õʼÓòÃû¾ÙÐÐ×Ö·ûÉϵÄÅÅÁÐ×éºÏ¡£
2.3 DGAÓòÃû¾ÙÀý
DGAµÄʹÓúÜÊÇÆÕ±é£¬ÏÖÔÚÒÑÖªµÄDGA¼Ò×åÓÐ40¶à¸ö¡£Ï±íö¾ÙÁË4¸öDGA¼Ò×åµÄTLD£¨¶¥¼¶Óò£©¡¢SLD£¨¶þ¼¶Óò£©ºÍÑùÀý£º

±í1 ²î±ðDGA¼Ò×å¾ÙÀý
03 ÏÖ×´
3.1 ¸ÅÊö
´ó´ó¶¼DGAËã·¨¶¼¾ßÓÐʱ¼äÒÀÀµÐÔºÍÈ·¶¨ÐÔ£¬¼´ËüÃǵÄÌìÉú²ÎÊýÊǿɻñÈ¡ºÍ¿ÉÖØÓõ쬴ӶøÅÌËã³öËùÓпÉÄܵÄЧ¹û¡£»ùÓÚ´ËÌØµã£¬¿ÉÒÔ¶Ôÿ¸ö¶ñÒâÈí¼þ¼°Æä±äÌå¾ÙÐÐÄæÏòÆÊÎö»ñµÃÓòÃûÌìÉúËã·¨ºÍÖÖ×Ó£¬´Ó¶øÌáÈ¡¸ø¶¨ÈÕÆÚºÍʱ¼äµÄÓÐÓÃÓòÃûÜöÝÍ£¬¼ÓÈëºÚÃûµ¥¾ÙÐÐDGAÓòÃû¼ì²â¡£
¿ÉÊÇ£¬µ±Ë¼Á¿µ½ÌìÌì·¢Ã÷µÄ¶ñÒâÈí¼þ¼°±äÖÖµÄÊýĿʱ£¬ÕâÖÖÒªÁìÊDz»¿ÉÐеġ£Ôµ¹ÊÔÓÉÓÐÁ½¸ö·½Ã棬ÆäÒ»ÊǺÚÃûµ¥µÄ¸üÐÂËÙÂÊÔ¶Ô¶¸Ï²»ÉÏDGAÓòÃûµÄÌìÉúËÙÂÊ£»Æä¶þÊDZØÐè×è¶ÏËùÓеÄDGAÓòÃû²Å»ª×è¶ÏÊÜ¿ØÖ÷»úÓëC2·þÎñÆ÷ͨѶ¡£¾ÝÎÄÏ×[2]ËùÑÔ£¬¿ªÔ´ºÚÃûµ¥µÄDGAÁýÕÖÂʵͣ¬½ö²»µ½1.2%µÄDGA°üÀ¨ÔÚºÚÃûµ¥ÖС£Òò´Ë£¬´Ö±©ÓÃDGA¹¹½¨ºÚÃûµ¥µÄÒªÁì²¢²»¿É½â¾ö»ù´¡ÎÊÌâ¡£
»ùÓÚ»úеѧϰµÄDGAÓòÃû¼ì²âÒªÁì´ó²¿·ÖÊÇÖ±½Ó´ÓÍêÈ«¼°¸ñÓòÃûFQDN£¨Fully Qualified Domain Name£©ÌáÈ¡ÌØÕ÷£¬½«FQDN×÷Ϊһ¸ö×Ö·û´®£¬ÌáÈ¡³¤¶È¡¢ìØ¡¢NGramµÈÌØÕ÷£¬ÕâÀàÒªÁì²»ÒÀÀµÓÚÉÏÏÂÎÄÐÅÏ¢£¬ÀýÈçʱ¼ä¡¢ÇéÐÎÉèÖõȣ¬Òò´Ë£¬¿ÉÒÔʵÏÖʵʱ¼ì²â¡£
ÏÖÔڹŰå»úеѧϰËã·¨ºÍÉî¶Èѧϰ¶¼±»ÓÃÓÚDGAÓòÃû¼ì²â£¬²¢¶¼È¡µÃÁ˲»´íµÄЧ¹û¡£¹Å°å»úеѧϰËã·¨·ÖΪ¼àÊÓѧϰºÍÎÞ¼àÊÓѧϰÁ½À࣬ÕâÁ½ÀàËã·¨¶¼ÔÚDGAÓòÃû¼ì²âÖÐÓÐÓ¦Óá£
3.2 »ùÓÚ¼àÊÓѧϰµÄ¼ì²â
³£ÓõļàÊÓѧϰËã·¨ÓоöÒéÊ÷ºÍËæ»úÉÁÖ£¬ÀýÈçÎÄÏ×[3]ʹÓþöÒéÊ÷½â¾öÇø·ÖDGAÓòÃûºÍÕý³£ÓòÃûµÄ¶þ·ÖÀàÎÊÌ⣬ʹÓõÄÌØÕ÷ÓÐÓòÃû³¤¶È¡¢×Ö·û±ÈÀý£¨°üÀ¨ÔªÒô×Öĸ¡¢×ÓÒô×Öĸ¡¢Êý×Ö£©ºÍNGramìØ£»ÎÄÏ×[4]Ò²ÊÇʹÓþöÒéÊ÷Ëã·¨¾ÙÐжþ·ÖÀ࣬ʹÓõÄÌØÕ÷ΪÓòÃû³¤¶ÈºÍ×Ô½ç˵µÄÓòÃûÆÚÍûÖµ¡£Ëæ»úÉÁÖÓÐÖúÓÚ½â¾ö¾öÒéÊ÷µÄ¹ýÄâºÏÎÊÌ⣬ÎÄÏ×ÖÐÆÕ±éʹÓÃËæ»úÉÁÖÀ´´¦Öóͷ£»ùÓÚDGAµÄ½©Ê¬ÍøÂçÎÊÌ⣬ÀýÈçÎÄÏ×[5]¾ÍÊÇʹÓÃËæ»úÉÁÖËã·¨½â¾ö¶þ·ÖÀàÎÊÌ⣬ʹÓõÄÌØÕ÷ÓÐËÄÀࣺÂþÑÜÌØÕ÷¡¢½á¹¹ÌØÕ÷¡¢·¢ÒôÌØÕ÷¡¢Í¨ÓÃÌØÕ÷¡£
3.3 »ùÓÚÎÞ¼àÊÓѧϰµÄ¼ì²â
»ùÓÚ¾öÒéÊ÷ºÍËæ»úÉÁÖµÄÄ£×ÓÊôÓÚ¼àÊÓѧϰ£¬¶¼ÐèÒªÌØÕ÷²Å»ªÊÂÇé¡£ÎÞ¼àÊÓѧϰÓëÓмàÊÓѧϰÏà±ÈÓÐÒ»¸öÖ÷ÒªµÄÓÅÊÆÊDz»ÐèÒª´ø±ê¼ÇµÄÊý¾Ý¼¯¡£ÖÚËùÖÜÖªµÄK-MeansËã·¨ÊÇÒ»¸ö¼òÆÓ³£ÓõÄÎÞ¼àÊÓѧϰËã·¨£¬±»ÆÕ±éÓ¦ÓÃÔÚDGAÓòÃû¼ì²âÖУ¬ÀýÈçÎÄÏ×[6]ʹÓÃKMeans¾ÙÐÐDGA¼Ò×åµÄ¶à·ÖÀ࣬ʹÓÃÁËÓòÃûµÄ³¤¶È¡¢ìغÍNGramÏà¹ØÌØÕ÷£»ÎÄÏ×[7]ʹÓÃKMeans¾ÙÐÐÇø·ÖÕý³£ºÍDGAÓòÃû£¬Ê¹ÓÃÁ˿ɶÁÐÔ£¨NGram£©¡¢ÐÅÏ¢ìØ¡¢½á¹¹£¨³¤¶È¡¢×Ö·û±ÈÀýµÈ£©ÈýÀàÌØÕ÷¡£ÔÚÒÑÍùÊ®ÄêÖУ¬Ö»ÓÐÉÙÊýÎÞ¼àÊÓËã·¨ÓÃÀ´½â¾öDGAÓòÃû¼ì²âÎÊÌâ¡£³ýÁËKMeansÉÐÓÐÁ½ÖÖ¾ÛÀàÒªÁ죺»ìÏýÄ£×Ó£¨MM£©ºÍHC£¬µ«ËüÃǵÄʹÓúÜÊÇÓÐÏÞ£¬Ð§¹û²»²ÇÏë¡£
3.4 »ùÓÚÉî¶ÈѧϰµÄ¼ì²â
Éî¶ÈѧϰҲÔÚDGAÓòÃû¼ì²âÖÐÓÐÆÕ±éµÄÓ¦Óã¬Ñ»·Éñ¾ÍøÂ磨RNNs£©¡¢ÊÇ·ÇÆÚÓ°ÏóÍøÂ磨LSTM£©ºÍ¾í»ýÉñ¾ÍøÂ磨CNN£©¶¼±»Ó¦Óõ½ÁËDGAÓòÃû¼ì²âÖС£ÀýÈ磺ÎÄÏ×[8]ʹÓÃLSTM½â¾öDGAÓòÃûºÍÕý³£ÓòÃû¶þ·ÖÀà¡¢DGA¼Ò×å¶à·ÖÀàÎÊÌ⣻ÎÄÏ×[9]Ñо¿²¢¿ª·¢Á˾µäLSTMµÄ±äÌ壬ҲÓÃÀ´¾ÙÐжþ·ÖÀàºÍ¶à·ÖÀࣻÎÄÏ×[10]½ÏÁ¿ÁËRNN¡¢LSTM¡¢CNNºÍCNN-LSTM×éºÏ¾ÙÐÐDGA¶þ·ÖÀàºÍ¶à·ÖÀàµÄЧ¹û¡£Éî¶ÈѧϰÔÚ¶þ·ÖÀàÖÐÌåÏÖ¾«²Ê£¬µ«ÔÚ¶à·ÖÀàÖдËÀàÒªÁìÔÚ׼ȷ¶ÈºÍÕÙ»ØÂÊ·½Ã涼ȡµÃÁËÁîÈËÏÓÒɵÄЧ¹û¡£×îºóÐèҪ˵Ã÷µÄÊÇÉî¶ÈѧϰËäÈ»¿ÉÒÔÌṩºÜºÃµÄ·ÖÀàЧ¹û£¬µ«ËüÃÇÍùÍùÊÇÌ«¹ýÄâºÏµÄ£¬ÓÈÆäÊDz»Í¸Ã÷µÄ£¬È±·¦Í¸Ã÷¶È×îÖÕµ¼ÖÂÎÞ·¨¶ÔËã·¨¾ÙÐÐ΢µ÷£¬Ò²ÎÞ·¨Ú¹ÊÍЧ¹û±³ºóµÄÔµ¹ÊÔÓÉ¡£
»¹ÖµµÃÒ»ÌáµÄÊÇ£¬ÓÐÑо¿Ê¹ÓÃÉî¶ÈѧϰËã·¨¾ÙÐÐÌØÕ÷ÌáÈ¡£¬È»ºóʹÓ÷ÖÀàËã·¨¾ÙÐзÖÀ࣬ÀýÈçÎÄÏ×[7]ʹÓÃCNNÌìÉúÌØÕ÷£¬ÕâÐ©ÌØÕ÷ËæºóÓɾöÒéÊ÷ºÍËæ»úÉÁÖ·ÖÀàÆ÷¾ÙÐзÖÀà¡£
04 ¼Æ»®
±¾ÎÄÌá³öÁËÒ»ÖÖ¼òÆÓ¸ßЧµÄDGAÓòÃû¼ì²â¼Æ»®¡£¸Ã¼Æ»®½öÌáÈ¡ÓòÃûµÄ×Ö·û´®ÌØÕ÷¾ÙÐÐDGAÓòÃû¼ì²â£¬ÊµÑéÅú×¢¸Ã¼Æ»®¼òÆÓÓÐÓ᣸üƻ®µÄÏêϸ¼ì²âÄ£×ÓʾÒâͼÈçͼ2Ëùʾ¡£½ÓÏÂÀ´ÎÒÃǽ«Öصã´ÓÌØÕ÷¹¤³ÌºÍÄ£×ÓÆÀ¹ÀÁ½¸ö½Ç¶È¾ÙÐÐÏÈÈÝ¡£

4.1 ÌØÕ÷¹¤³Ì
±¾¼Æ»®Ê¹ÓÃÌØÕ÷20¶à¸ö£¬·ÖΪÁ½ÀࣺһÀàΪ¾µäµÄ×Ö·û´®»³±§ÌØÕ÷£¬ÀýÈ糤¶È¡¢ìØ¡¢×Ö·û±ÈÀýµÈ£¬ÕâÀàÌØÕ÷¼òÆÓÓÐÓã»Ò»ÀàΪNLP-nGramsÏà¹ØµÄÌØÕ÷¡£ÕâÐ©ÌØÕ÷´ó´ó¶¼·´Ó¦ÁËÓ¦ÓÃʵ¼ùÖжÔÓòÃûµÄÒªÇó£¬ÀýÈçSEO£¨ËÑË÷ÒýÇæÓÅ»¯£©½¨ÒéÁËÓòÃûµÄÀíÏ볤¶È£¨Ô¼Äª12-13¸ö×Ö·û£©£¬ÒÔ¼°¾ßÓÐÒ×¶Á¡¢Ò׼ǡ¢Ò×Èö²¥µÈÌØµã¡£
±¾¼Æ»®¶Ôÿ¸öÌØÕ÷µÄÖ±·½Í¼ºÍÏà¶ÔÂþÑܾÙÐÐÁËÆÊÎö£¬ÏÂÃæÁÙ²¿·ÖÌØÕ÷ÂþÑÜͼ¾ÙÐоÙÀýÆÊÎö¡£
ÓòÃû³¤¶È:
ÓòÃû³¤¶ÈÊÇÇø·ÖÕý³£ºÍDGAÓòÃûµÄÒ»¸öÖ÷ÒªÌØÕ÷£¬´Óͼ3ÓòÃû³¤¶ÈÂþÑÜͼ¿ÉÒÔ¿´³öDGAÓòÃûµÄ³¤¶È¸ü³¤¡£
ÓòÃûìØ:
ìØ·´Ó¦ÁË×Ö·û´®µÄËæ»úÐÔ£¬DGAÓòÃûÊÇÓÉËã·¨ÌìÉúµÄÎ±Ëæ»ú×Ö·û´®£¬ÆäËæ»úÐÔ¸úÕý³£ÓòÃûÏà±È¸ü¸ß¡£Í¼4ΪÕý³£ÓòÃûºÍDGAÓòÃûµÄìØÂþÑܱÈÕÕͼ¡£
ÓòÃû×Ö·û×ªÒÆ¸ÅÂÊ:
×Ö·û×ªÒÆ¸ÅÂÊ¿ÉÒÔ·´Ó¦ÓòÃûµÄ¿É¶ÁÐÔ£¬Ê¹ÓÃÕý³£ÓòÃû»òÕßÓ¢ÎÄÓïÁÏͳ¼ÆN-GramµÄ×ªÒÆ¸ÅÂÊ£¬ÓÉÓÚDGAÓòÃû¸üËæ»ú£¬ÆäN-Gram×ªÒÆ¸ÅÂÊÓëÕý³£ÓïÁϲî±ð½Ï´ó¡£
×Ö·û±ÈÀý:
×Ö·û±ÈÀýÒ²ÊÇÇø·ÖÕý³£ÓòÃûºÍDGAÓòÃûµÄ³£ÓÃÌØÕ÷£¬ËùÊö×Ö·û°üÀ¨Êý×Ö¡¢ÔªÒô×Öĸ¡¢×ÓÒô×ÖĸµÈ¡£
nGram:
±¾¼Æ»®ÖÐÅÌËãÁËnGram·ºÆð¸ÅÂÊÅÅÃûµÄƽ¾ùÖµºÍ·½²î£¬»ù׼ΪӢÎÄÓïÁÏ£¬ÓÉÓÚDGAÓòÃûµÄËæ»úÐÔ£¬ÆäÓëÓ¢ÎÄÓïÁϲî±ð½Ï´ó£¬Òò´ËÆänGram·ºÆð¸ÅÂʵÄÅÅÃû¸ü¿¿ºó¡£
4.2 Ä£×ÓÆÀ¹À
±¾¼Æ»®Ê¹ÓõÄѵÁ·Êý¾ÝȪԴÓÚ¹ûÕæÊý¾Ý¼¯£¬Êý¾ÝÁ¿ÔÚ°ÙÍòÒÔÉÏ£¬Ä£×Ó¼ì²âЧ¹ûÈçϱíËùʾ£º

±í2 Ä£×Ó¼ì²âЧ¹û
´ÓÉϱíµÄÊý¾Ý¿ÉÒÔ¿´³ö²î±ðËã·¨µÄ¼ì²âЧ¹û²î±ð²»´ó£¬¼ì²âÂʾùµÖ´ï96%ÒÔÉÏ¡£
05 ºó¼Ç
Ïà½ÏÁ¿ºÚÃûµ¥·½·¨£¬»ùÓÚ»úеѧϰµÄDGAÓòÃû¼ì²âÒªÁì¾ßÓÐÒ»¶¨µÄÓÅÊÆ£¬µ«ÈÔÈ»ÐèҪƾ֤ÏÖÕæÏàÐξÙÐÐÓÅ»¯¡£±¾ÎÄÌá³öµÄDGAÓòÃû¼ì²â¼Æ»®Äܹ»µÖ´ï½ÏºÃµÄ¼ì²âЧ¹û£¬¿ÉÊǼƻ®¶Ô»ùÓÚ´ÇÊéµÄDGAÓòÃû¼ì²âЧ¹ûÉÐÓÐÓÅ»¯¿Õ¼ä£¬Õ⽫×÷ΪºóÐøÑо¿µÄÖØµã£»ÁíÍ⣬±¾¼Æ»®ÊÇÕë¶ÔDGAÓòÃûºÍÕý³£ÓòÃû¾ÙÐеĶþ·ÖÀàÑо¿£¬ºóÐøÎÒÃǽ«½øÒ»²½¶ÔDGA¼Ò×å¾ÙÐжà·ÖÀàÑо¿£¬¾´Çë¹Ø×¢¡£
²Î¿¼ÎÄÏ×
[1]Patsakis,Constantinos,and FranCasino. "Hydras and IPFS: a decentralised playground for malware."International Journal of Information Security (2019): 1-13.
[2]K¨¹hrer M, Rossow C, Holz T (2014) Paint it black: evaluating the effectiveness of malware blacklists. In: RAID 2014: research in attacks, intrusions and defenses, June, pp 1¨C21. Springer International Publishing.
[3]Ahluwalia A, Traore I, Ganame K, Agarwal N (2017) Detecting broad length algorithmically generated domains. In: Intelligent, secure, and dependable systems in distributed and cloud environments, chap. 2, pp 19¨C34. Springer International Publishing.
[4]Truong D, Cheng G (2016) Detecting domain-flux botnet based on DNS traffic features in managed network. Security Communication Networks 9(14):2338¨C2347.
[5]Luo X, Wang L, Xu Z, Yang J, Sun M, Wang J (2017) DGASensor: fast detection for DGA-based malwares. In: 5th international conference on communications and broadband networking, pp 47¨C53.
[6]Bisio F, Saeli S, Lombardo P, Bernardi D, Perotti A, Massa D (2017) Real-time behavioral DGA detection through machine learning. In: 2017 international carnahan conference on security technology, pp 1¨C6.
[7]Pu Y, Chen X, Pu Y, Shi J (2015) A clustering approach for detecting auto-generated Botnet domains. In: Applications and techniques in information security, pp 269¨C279.
[8]Woodbridge J, Anderson HS, Ahuja A, Grant D (2016) Predicting domain generation algorithms with long short-term memory networks. CoRR abs/1611.0.
[9]Tran D, Mac H, Tong V, Tran HA, Nguyen LG (2018) A LSTM based framework for handling multiclass imbalance in DGA Botnet detection. Neurocomputing 275:2401¨C2413.
[10]Vinayakumar R, Soman K, Poornachandran P, Sachin Kumar S (2018) Evaluating deep learning approaches to characterize and classify the DGAs at scale. J Intell Fuzzy Syst 34(3):1265¨C1276.
°æÈ¨ÉùÃ÷
×ªÔØÇëÎñ±Ø×¢Ã÷À´ÓÉ¡£
°æÈ¨ËùÓУ¬Î¥Õ߱ؾ¿¡£
- Òªº¦´Ê±êÇ©£º
- ×ðÁú¿Ê± È˹¤ÖÇÄÜÇå¾² AIÇå¾²Ó¦Óà DGAÓòÃû¼ì²â